2019年9月3日 お茶の水女子大 国際交流留学生プラザ多目的ホール

TIAナノバイオサマースクール(糖鎖・レクチン)

糖鎖のシークエンス解析および立体構造解析

Analyses in determining the sequence and structure of glycans

名古屋市立大学大学院薬学研究科

Graduate School of Pharmaceutical Sciences, Nagoya City University

矢木 宏和 Hirokazu Yagi

Contents

I. Introduction

Chemical character

II. Sequence analysis

- Released glycan analysis
- Mass spectrometric analysis
- HPLC mapping method

III. Conformational analysis

- Digest for conformational analysis
- •Our recent topics

Monosaccharide structure

β-D-Glucose

Common monosaccharides found in vertebrates

D-Glucose (Glc)

N-acetyl D-Glucosamine (GlcNAc)

D-Galactose (Gal)

D-Xylose (Xyl)

N-acetyl D-Galactosamine (GalNAc)

L-Fucose (Fuc)

D-Glucronic acid (GlcA)

N-acetylnuraminic acid (NeuAc) **Glycoside formation**

異性体

Oligomer	Composition	Possible oligopeptide and oligonucleotide	Possible oligosaccharides
Dimer	AA/AB	1/2	11 / 20
Trimer	AAA/ABC	1/6	120 / 720
Tetramer	AAAA/ABCD	1 / 24	1424 / 34560
Pentamer	AA AAA / ABCDE	1 / 120	17872 / 2144640

Essentials of Carbohydrate Chemistry and Biochemistry (2003) より引用

Dimers composed of two glucose resides

Glea1- α 1GleGle β 1- β 1GleGle α 1- β 1GleGle α 1-2GleGle β 1-2GleGle α 1-3GleGle β 1-3GleGle α 1-4GleGle β 1-4GleGle α 1-6GleGle β 1-6Gle

Glycans in Mammals

Symbolic representations

- Galactose (Gal)
 - N-Acetylgalactosamine (GalNAc)
- Galactosamine (GalN)
- Glucose (Glc)
 - N-Acetylglucosamine (GlcNAc)
- Glucosamine (GlcN)
- Mannose (Man)
- N-Acetylmannosamine (ManNAc)
- Mannosamine (ManN)

Other Monosaccharides

Use letter designation inside symbol to specify if needed

http://www.functionalglycomics.org/static/c onsortium/CFGnomenclature.pdf

- Xylose (Xyl) N-Acetylneuraminic acid (Neu5Ac) N-Glycolylneuraminic acid (Neu5Gc) 2-Keto-3-deoxynononic acid (Kdn) Fucose (Fuc) Glucuronic acid (GlcA) Iduronic acid (IdoA) Galacturonic acid (GalA) Mannuronic acid (ManA)
 - (A)

Glycan function of therapeutic antibody and biologics

"Naked" protein

Glycan function of therapeutic antibody and biologics

Glycan function of therapeutic antibody and biologics

Heterogeneity

GN-M GN-M G-GN-M GN-M GN-M GN-M G-GN-M G-GN-M G-GN-M G-GN-M

GN-M GN-M-GN-GN GN-M

G-GN-M GN-M-GN-GN GN-M

GN-M GN-M-GN-GN G-GN-M

G-GN-M GN-M-GN-GN G-GN-M GN-M GN-M GN-M G-GN-M GN-M GN-M GN-M G-GN-M G-GN-M G-GN-M G-GN-M G-GN-M

Glycoprotein glycans

•*O*-linked glycans (Ser/Thr)

Examples of typical N- and O-linked glycans

N-linked glycan

O-linked glycan

Classification of N-linked glycans

Classification of *O***-linked glycans**

Туре	Structure	Туре	Structure
Core 1	Galβ1-3GAlNac	Core 4	GalNAcβ1 、 6 GalNAcβ1-3GalNAc
Core 2	GalNAcβ1 、 6 Galβ1-3GalNAc	Core 5	GalNAcα1-3GalNAc
Core 3	GalNAcβ1-3GalNAc	Core 6	GlcNAcβ1 、 6 GalNAc

Sugar chains

Protein

- Protein solubility and stability
- Structural integrity of protein functional sites
- Cell-cell communication

Highly branched structures

- Microheterogeneity
- Conformational fluctuations

Such structural complexity, diversity, and fluctuation hamper the structural biology-based approaches for understanding the function of glycoprotein as well as oligosaccharides.

Contents

I. Introduction

Chemical character

II. Sequence analysis

- Released glycan analysis
- Mass spectrometric analysis
- HPLC mapping method

III. Conformational analysis

- Digest for conformational analysis
- Our recent topics

Scheme of N-glycan structural analyses

Comparison of analytical methods for N-glycans

	HPLC		CE		MS	
Detection	Fluorescence	MS	Fluorescence	MS	MS	MS ⁿ
Analysis time	long		rapid		rapid	middle
Sensitivity	Ø	0	Ø	0	0	Δ
Discrimination of isomeric product	Ø	Ø	0	0	×	\bigtriangleup
Identification of isomeric product	Ø	\bigtriangleup	\bigtriangleup	\bigtriangleup	×	0
Index of determination of glycan structures	Elution position	Molecular mass	Elution position	Molecular mass	Molecular mass	Fragment ation
Database or analytical web application	• GALAXY • Glycobase		Glycostore		• GlycoMod • jCGGDB	 Glycan Mass Spectral DataBase

N-glycan-releasing methods

	Hydrozynolysis	peptide:N-glycanase F (PNGase F)	glycoamidase A
	Chemical reaction (hydrazine)	Enzyme reaction (recombinant protein) optimal pH 7-8	Enzyme reaction (Extract of alamond seeds) optimal pH 4
Merit	 Application for crude sample (Cells and tissues) 	 Direct glycan-releasing from glycoproteins 	 Possible for releasing to core α1,3 fucosylation
Demerit	 Since N-acetyl and N- glycoryl gropus are removed by hydrazinolysis, reacetylation is nessesary for sialylated glycans (Undistinguishable for molecular species of sialic acid) Production of Byproducts 	 Uncleavable to core α1,3 fucosylated oligosacchairdes 	 Uncleavable to whole glycoproteins (cleavable to glycopepetides)

O-glycan-releasing method

β-Elimination in common O-glycoside linkages with Ser or Thr residues in alkaline conditions and a plausible mechanism of subsequent peeling reaction.

Florescence labeling of oligosaccharides

ABA:2-Aminobenzoic acid 2-ABAD:2-Aminobenzamide 3-ABAD:3-Aminobenzamide ABEE:Ethyl *p*-aminobenzoate ABN:*p*-Aminobenzonitrile ACP:2-Amino-6-cyanoethylpyridine AMAC:2-Aminoacridone AMC:7-Amino-4-methylcoumarin ANTS:8-Aminonaphthalene-1,3,6-trisulfonic acid ANDS:7-Aminonaphthalene-1,3-disulfonic acid AP:2-Aminopyridine APTS:8-Aminopyrene-1,3,6-trisulfonic acid

Masahiro Yodoshi/Shigeo Suzuki: Ultra-sensitive Analysis of Carbohydrates -Update-. Glycoword. GT-C03. https://www.glycoforum.gr.jp/glycoword/glycotechnology/GT-C03upE.html

Separation of oligosaccharides by HPLC

Separation modes	Anion exchange column	Normal phase column	Reverse phase column
Species	• DEAE • mono Q	•amide •amino •cellurose	• ODS • C30
Principal	According to negative charge	Separation is carried out using hydrogen	Separation is carried out using

According toSeparation is carriedSeparation is carriednegative chargeout using hydrogenout usingdegree such asbonds between thehydrophobicnumber of sialic acidresin and sugarinteraction betweenresidues and sulfatechains.the resin and sugargroups..chains.

Examination of glycosylation profiles

DEAE column

ODS column

Identification of glycan structures by HPLC

Coinjection with standard glycans
 Evaluation by mass spectrometric data
 Comparison with elution accumulated data
 Consistence between standard and sample
 GALAXY (http://www.glycoanalysis.info/)
 Over 500 data of PA-N-oligosaccharides
 GALAXY
 Glycoanalysis by the three axes of MS and chromatography.

Glycobase(http://glycobase.nibrt.ie/glycobas e/show_nibrt.action)

> **Over 675 data of AB-oligosaccharides** (containing O-glycans)

> > JLYCOBASE 3.1

NATIONAL INSTITUTE FOR BIOPROCESSING RESEARCH ANJ TRAINING

Inconsistence between standard and sample

Incase of unknow oligosaccharide which is not registered in database ↓ Estimation/identification by the enzyme treatment

Composition and linkage analyses

The CCRC Spectral Database for Partially Methylated Alditol Acetate

https://www.ccrc.uga.edu/specdb/ms/pmaa/pframe.html

Ferdosi S, Ho TH, Castle EP, Stanton ML, Borges CR (2018) Behavior of blood plasma glycan features in bladder cancer. PLoS ONE 13(7): e0201208. https://doi.org/10.1371/journal.pone.0201208

Structural identification by NMR

H-¹³C HSQC spectrum of the VPS-PS with ¹H NMR trace.

Yildiz F, Fong J, Sadovskaya I, Grard T, Vinogradov E (2014) Structural Characterization of the Extracellular Polysaccharide from *Vibrio cholerae* O1 El-Tor. PLoS ONE 9(1): e86751. https://doi.org/10.1371/journal.pone.0086751

Mass spectrometric analysis

The following figure illustrates the general nomenclature scheme for glycan fragments.

MALDI-TOF MS spectrum of N-glycans enzymatically released from the biosimilar of cetuximab and cetuximab

a) native N-glycans before mild alkali treatment (pH 10 ammonium hydroxide); b) native N-glycans of the biosimilar after mild alkali treatment; c) native N-glycans from the cetuximab. The cartoons of possible structures of glycans were adapted from Glycoworkbench and structure is depicted following the CFG notation.

Liu S, Gao W, Wang Y, He Z, Feng X, Liu B-F, et al. (2017) Comprehensive N-Glycan Profiling of Cetuximab Biosimilar Candidate by NP-HPLC and MALDI-MS. PLoS ONE 12(1): e0170013. https://doi.org/10.1371/journal.pone.0170013

NanoLC-ESI-MS/MS spectrum of native glycans

MS/MS spectra of m/z 2060 with chemical composition of GlcNAc₄Man₃Gal₂NeuAcLac₁; b) MS/MS spectra of m/z 2078 with chemical composition of GlcNAc₄Man₃Gal₂NeuAc₁.

Liu S, Gao W, Wang Y, He Z, Feng X, Liu B-F, et al. (2017) Comprehensive N-Glycan Profiling of Cetuximab Biosimilar Candidate by NP-HPLC and MALDI-MS. PLoS ONE 12(1): e0170013. https://doi.org/10.1371/journal.pone.0170013

MS profiling of site-specific glycoforms of the serum sFcyRIIIb,

H. Yagi et al. Sci. rep. ,9: 2719, 2018

Molecular model of sFcγRIIIb with *N*-glycans on the basis of our LC-MS/MS data.

H. Yagi et al. Sci. rep. ,9: 2719, 2018
Native mass analysis

MS can be used to measure the stoichiometry and composition of protein complexes, the presence of small molecules

(a) Schematic of the rhEPO
backbone sequence and its
reported PTM sites. (b) The zerocharge deconvoluted native MS
spectrum of rhEPO.

Yang, Y., Liu, F., Franc, V. *et al.* Hybrid mass spectrometry approaches in glycoprotein analysis and their usage in scoring biosimilarity. *Nat Commun* **7**, 13397 (2016). https://doi.org/10.1038/ncomms13397

Detail information of N-glycans structural analysis by using HPLC mapping method

The multi-dimensional HPLC mapping technique

Prog. Nucl. Magn. Reson. Spectrosc. 56, 346-359 (2010)

Dr. Noriko Takahashi

3-D Elution Map of PA-Oligosaccharides

Plot on 2-D Map (Overlay)

The elution position of each peak is expressed in glucose units (gu).

The elution positions of peaks in an unknown glycan pool are assigned an overall gu value by comparison with the standard α 1-6glucose oligomers.

N-glycosylation profiles on ODS cplumn

HPLC peak areas of PA-glycans can show a linearity plot from 0.1 to 100 pmol (in a quantitative manner)

HPLC-based discrimination of glycol-isomers

G-GN G-GN G-GN M G-GN M	G-GN G-GN M G-GN M-GN-GN- G-GN	G-GN GN M G-GN G-GN M G-GN	G-GN G-GN M F M-GN-GN- G-GN GN M	
410.12	410.13	410.14	410.15	
ODS : 14.1	ODS : 13.8	ODS : 13.7	ODS : 12.5	
Amide : 9.5	Amide : 9.3	Amide : 9.2	Amide : 8.9	

Distinguish $\alpha 2-6$ from $\alpha 2-3!$

Amide : 6.0	Amide : 5.4

Di-sialyl Mono-sialyl • • • chicken α2-3 chicken **♦---(** $\alpha 2-6$ **⊖∎·O ♦-<u>0-</u>-**(a n b S m С efg quail quail a S qr m bc 50 25 0 0 25 50 Elution time (min) Elution time (min)

Expression of α 2-6 sialylated *N*-glycans in avian intestines

A principal of HPLC mapping method

Lectin=Glycan binding protein

Multiple structures

Systematic analysis of sugar chain-protein interactions by frontal affinity chromatography (FAC) method

ology/GT-C07E.html

Elution profiles of PA-glycan on lectin-immobilized column

		V-V _o	K _d
LNFP-Ι Fucα1	Gal β 1-3GlcNAc β 1-3Gal β 1-4Glc – PA -2	0.18ml	0.17mM
LNT	$\operatorname{Gal}\beta$ 1-3 $\operatorname{GlcNAc}\beta$ 1-3 $\operatorname{Gal}\beta$ 1-4 Glc – PA	0.16	0.19
LNnT	$\operatorname{Gal}\beta$ 1-4GlcNAc β 1-3Gal β 1-4Glc – PA	0.096	0.32
GM1	Gal β 1-3GalNAc β 1-4Gal β 1-4Glc – PA NeuAc α 2-3	0.048	0.63
GA1	Gal β 1-3GalNAc β 1-4Gal β 1-4Glc – PA	0.052	0.58
Gb4	GalNAc β 1-3Gal α 1-4Gal β 1-4Glc – PA	0.024	1.3
		G	lyco Word

Fig. 3

Examples of FAC analysis: C. elegans galectin LEC-6 is immobilized at a concentration of 7.44 mg/ml gel, and to this column 6 pyridylaminated oligosaccharides derived from glycolipids (10 nM) are applied through a 2-ml sample loop at a flow rate of 0.25 ml/min. Rhamnose is used as a negative control to obtain V0. Kd for each oligosaccharide is calculated according to eq. (1) by using V-V0 and Bt values determined by concentration analysis with respect to p-aminophenyl-blactoside.

Jun Hirabayashi: Frontal Affinity Chromatography for Quantitative Analysis of Sugar-Protein Interaction. Glycoword. GT-C07. <u>https://www.glycoforum.gr.jp/glycoword/glycotechn</u> <u>ology/GT-C07E.html</u>

http://www.glycoanalysis.info/

Trends Glycosci. Glycotech. 15, 235-251 (2003)

Information page for the individual N-glycans

Display of products resulting from glycosidase treatments

Prediction of digestion precursors of a selected N-glycan

Prediction of digestion precursors of a selected N-glycan

Graph selection from the three types of combination of the axes

Trends Glycosci. Glycotech. 15, 235-251 (2003)

MW 2302 ?

Expanded HPLC map including sulfated oligosaccharides

ODS(G.U.) Trends in Glycoscie

Trends in Glycoscience and Glycotechnology, 21, pp95-104, 2009

N-glycosylation profiles derived from two different influenza A viruses grown in MDCK cells and embryonated eggs

MDCK cells

Fluorescence intensity

Contents

I. Introduction

Chemical character

II. Sequence analysis

- Released glycan analysis
- Mass spectrometric analysis
- HPLC mapping method

III. Conformational analysis

- Digest for conformational analysis
- •Our recent topics

Conformation analysis

Conformations of saccharide linkages- information available

X-ray crystallography –

Most oligosaccharides and glycoproteins either do not crystallize or give no resolvable electron density for the glycan. Glycans that can be seen are incomplete.

 \rightarrow average properties of linkages

Nuclear Magnetic Resonance Spectroscopy –

Experimental structural parameters (inter-nuclear distances and torsion angles) averaged on a msec timescale.

 \rightarrow a single well-defined conformation as an average structure.

Molecular Dynamics Simulations –

Theoretical dynamic structures on a nsec timescale.

 \rightarrow a conformational amassable of the structure if it is assumed that the theory is correct.

Crystal structures of IgG1-Fc/FcγRIII complex

Mizushima *et al.* Genes Cells. 2011 Nov;16(11):1071-80. doi: 10.1111/j.1365-2443.2011.01552.x.

Statistics of N-linked glycoproteins from PDB (94,336 structures, 2013.10.02)

Nuclear Magnetic Resonance Spectroscopy

J coupling :Dihedral angles

Nuclear Overhauser effect (NOE) < 5 Å

Pseudocontact Shift (PCS) < 40 Å

MD simulation

Multiscale modeling of glycosaminoglycans from disaccharide to polysaccharide is necessitated by their size and heterogeneity

$$E = \sum_{bonds} k_b (l - l_0)^2 + \sum_{angles} k_a (\theta - \theta_0)^2 + \sum_{torsions} \frac{V_n}{2} [1 + cos(n\phi - \phi_0)]$$

Harmonic oscillator-like bonding, angular, torsional terms
$$+ \sum_{j=1}^{N-1} \sum_{i=j+1}^{N} \varepsilon_{i,j} \left[\left(\frac{\gamma_{0ij}}{\gamma_{ij}} \right)^{12} - 2 \left(\frac{\gamma_{0ij}}{\gamma_{ij}} \right)^6 \right] \text{ van der Waals}$$
$$+ \sum_{j=1}^{N-1} \sum_{i=j+1}^{N} \frac{q_i q_j}{4\pi\varepsilon_o \gamma_{ij}} \quad \text{electrostatic}$$
$$+ \sum_{j=1}^{N-1} \sum_{i=j+1}^{N} \left[\frac{C_{ij}}{\gamma_{ij}^{12}} - \frac{D_{ij}}{\gamma_{ij}^{10}} \right] \text{ hydrogen bonding}$$

Paramagnetic NMR-Validated Molecular Dynamics Simulation

The combination between NMR and MD data enable us to obtain validated conformational ensemble.

Conformational dynamics of GM9 dodecamer

Suzuki et. al. Chembiochem . 2017 Feb 16;18(4):396-401. doi: 10.1002/cbic.201600595

The carbohydrate recognition by the ER chaperone calreticulin involves an induced-fit mechanism

3D-structural models of the sugar-binding mode of calreticulin

Conformational dynamics of trisaccharide on GM9

Density maps of glycosidic linkage torsion angles

Suzuki et. al. Chembiochem . 2017 Feb 16;18(4):396-401. doi: 10.1002/cbic.201600595

Take home message!

It is important that you understand how much detailed information is required in the sequence and structural analyses. You should choose the appropriate methods.

Hex₅NexNAc₄Sia₂

Gal₂Man₃GlcNAc₄Neu5Ac₂

Acknowledgement

Kato's lab members K. Kato

Georgia Regent Univ. R.K. Yu Kyowa Hakko Kirin K. Shitara

M. Satoh S. Ilda NIAS M. Nakamura AIST N. Fukuzawa T. Matsumura H. Tateno Kyoto Univ. S. Oka N. Nakagawa Academia Sinica K.H. Khoo C.W. Kuo

NIHS

N. Hashii S. Nakazawa

Yokoyama City Univ.

N. Kawasaki

Shizuoka Univ.

E.Y. Park T. Kato

Taiyo Nippon Sanso

