Function and disease relevance of glycosyltransferase

Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN)

Gifu University

Yasuhiko Kizuka

Contents

1. Glycan (glycoconjugate) and glycosyltransferase

2. Alzheimer's disease and glycosyltransferase

3. Cancer and glycosyltransferase

Contents

1. Glycan (glycoconjugate) and glycosyltransferase

2. Alzheimer's disease and glycosyltransferase

3. Cancer and glycosyltransferase

Basics of glycans

Basics of glycans

Homopolysaccharide: energy, structure

Starch, glycogen

Cellulose, chitin — Fiber, structure

Glycoconjugate (sugar + another molecule)

- Glycoprotein: sugar + protein
- Glycolipid: sugar + ceramide

Mammalian glycoproteins

Over half of proteins are glycosylated in mammals

N-glycan

N-glycan structures are very complex

A significance of glycan: diversity

Difference between tissues

Depending on cell states

It gives dramatic structural diversity to a certain protein (protein variations from the limited number of genes)

How is N-glycan biosynthesized?

Glycan biosynthesis by glycosyltransferases

Biological functions, diseases

Typical domain structure of glycosyltransferase

N-glycan Catalytic domain (enzyme reaction) GDP-FUT8 **GDP** Core fucose

Enzyme reactions are well understood, but localization mechanisms are poorly understood

Contents

1. Glycan (glycoconjugate) and glycosyltransferase

2. Alzheimer's disease and glycosyltransferase

3. Cancer and glycosyltransferase

N-Glycan branching

Each branch has intrinsic functions

Alzheimer's Disease (AD)

Alzheimer's disease (AD)

- Most frequent dementia (60%)
 - 1 2 millions in Japan
- Brain atrophy
 Cognitive and memory impairment
- · Almost no effective medicine

Aβ deposition

Neuronal death

Hallmark: Amyloid (Aβ) plaque Alzheimer's disease brain (Aggregates of Aβ peptide) The cortex shrivels up, damaging Subarachnoid space areas involved in thinking, planning and remembering Healthy brain Cerebral cortex: Responsible for Ventricles filled with language and information cerebrospinal fluid processing Hippocampus: Critical to the formation of new memories shrinks severely

Results summary

Mouse brain

(Kizuka et al., EMBO Mol. Med., 2015, 7, 175)

Short memory

Relationships between GnT-III and AD

Bisecting GlcNAc

AD patient brain

GnT-III mRNA is upregulated in AD patient brain

(Akasaka-Manya et al. *Glycobiology* 2010, 20, 99)

Involvement in AD is unknown

(Nishikawa, Taniguchi et al. J. Biol. Chem. 1992, 267, 18199)

Tissue distribution

Purpose

GnT-III mRNA is most highly expressed in brain

(Miyoshi et al. *Int. J. Cancer* 1997, 72, 1117)

→ Functions in brains are unclear

Elucidation of the role of bisecting GlcNAc in AD

 \rightarrow analysis of GnT-III KO mice

AD model mouse

Mice do not develop AD spontaneously due to mutation in A β sequence and shorter lifespan than human \rightarrow AD model mice

Aβ is barely deposited in GnT-III KO mice

Mouse brain

(Kizuka et al., *EMBO Mol. Med.*, 2015, 7, 175)

Y-maze task

Remember the latest route

A route of normal mouse

$$A \rightarrow B \rightarrow C \rightarrow A \rightarrow B \rightarrow C$$

or

$$A{\rightarrow}C{\rightarrow}B{\rightarrow}A{\rightarrow}C{\rightarrow}B$$

Short memory

Why is not $A\beta$ deposited? : BACE1 is a target

Deletion of bisecting GlcNAc leads to BACE1 dysfunction

(Kizuka et al., *EMBO Mol. Med.*, 2015, 7, 175)

BACE1 distribution is changed

In vitro activity

Cleavage activity itself is not changed

Organelle separation

(Sucrose density gradient centrifugation)

WT: early endosome-rich fraction BACE1

KO: early + late endosome

(Kizuka et al., *EMBO Mol. Med.*, 2015, 7, 175)

BACE1 distribution is changed

Summary of GnT-III KO mice

Also in humans?

Bisecting GlcNAc on BACE1 is increased in AD brain

→ it suggests that bisecting GlcNAc regulates AD pathogenesis by modulating BACE1 functions

(Kizuka et al., *EMBO Mol. Med.*, 2015, 7, 175)

Search for GnT-III inhibitors

Contents

1. Glycan (glycoconjugate) and glycosyltransferase

2. Alzheimer's disease and glycosyltransferase

3. Cancer and glycosyltransferase

GnT-V and cancer

A possible mechanism

Two questions in biosynthesis

Crystal structure of GnT-V

Complex with substrate was not obtained

Strict recognition of branch by GnT-V

GnT-V looks recognize glycan core and polypeptide

Activity (substrate recognition) possibly depends on amino acid sequence around Asn

Regulation from a macroscopic viewpoint

E-cadherin

To be modified by GnT-V, GnT-V must avoid protein-protein crash

Short summary

- Structure of cancer-related GnT-V was clarified
- ② GnT-V strictly recognizes glycan branch and structure
- ③ Sequence and structure of acceptor proteins are also important factors

Perspective

- Detailed mechanisms of protein selective action
- Development of inhibitors

Summary

- Most glycosyltransferases are Golgi-localized type-II membrane proteins
- 2 Bisecting GlcNAc is a target of Alzheimer's disease
 - → Bisecting GlcNAc regulates BACE1 localization and promotes Aβ generation
- ③ GnT-V selectively acts on its target proteins and synthesizes cancer-related β1,6-branch

Acknowledgments

Kizuka Lab (Gifu)

Tetsuya Hirata

Chizuko Yonekawa

Yuko Tokoro

Mayumi Yamada

Seita Tomida

Natsumi Kasahara

Haruna Akatsuka

Gifu University

Hiromune Ando

Hidenori Tanaka

Kenichi Suzuki

Hiroshima University

Miyako Nakano

RIKEN

Systems Glycobiology Research Group

Naoyuki Taniguchi

Shinobu Kitazume

Keiko Sato

Ritsuko Oka

Yoshiki Yamaguchi

Masamichi Nagae

Dr. Saido's group

Takaomi Saido

Takashi Saito

Fujita Health University

Kazuki Nakajima