Catabolism of Glycans

Tadashi Suzuki
Glycometabolic Biochemistry Laboratory
RIKEN Cluster for Pioneering Research

There are various types of glycans...

... but in this lecture we mainly deal with N-linked glycans.

Biosynthesis of *N*-glycans: in mammalian cells, almost all processes have been clarified.

But when it comes to the catabolism of glycans...

- *Our textbook knowledge is; "it occurs in the lysosomes". Period.
- *When there is a problem in the lysosomal catabolism of glycans, people will suffer from lysosomal storage diseases, which cause multisystemic problems

ex. Sialidosis, Galactosialidosis, etc.

Lysosomal catabolism of *N*-glycans (Suzuki, T., *Mol. Aspect Med.* 2016)

Examples of lysosomal storage diseases which results in abnormal degradation of *N*-linked glycoproteins

Diseases	Defective Enzymes
----------	-------------------

Fucosidosis α -Fucosidase (FucA1)

Sialidosis Sialidase (Neu1)

 α -Mannosidosis α -Mannosidase (Man2B1)

 β -Mannosidosis β -Mannosidase (ManBA)

GM1-gangliosidosis β -Galactosidase (Glb1)

Sandhoff disease β -Hexosaminidase A/B (HexA/B)

Aspartylglucosaminuria Aspartylglucosaminidase

Peptide: N-glycanse (PNGase; Ngly1); de-N-glycosylating enzymes

PNGase: Plant- or bacteria-derived enzymes have been widely used as a tool reagent to study structures/functions of *N*-glycans on glycoproteins.

: N-acetylglucosamine (GlcNAc)

Prof. Inoue Prof. Lennarz

Discovery of cytosolic PNGase activity

(Suzuki, et al., BBRC 1993; JBC 1994)

Identification of gene (*PNG1*) encoding the cytosolic PNGase (Suzuki, *et al.*, *JCB* 2000)

-No obvious phenotypes for *png1* mutant

Ngly1 as a mammalian orthologue of *PNG1* (Suzuki, *et al., BBRC* 2003)

Birth and death of *N*-glycoproteins: Textbook knowledge

Cytosol and white part (where glycoproteins are supposed to be located) are segregated by lipid bilayer

Quality control (QC) of N-glycoproteins in the endoplasmic reticulum (ER)

Novel catabolic pathway for glycans released by Ngly1 in the cytosol ("non-lysosomal glycan degradation")

ENGase: endo-β-*N*-acetylglucosaminidase -Believed to be involved in the downstream of Ngly1-mediated glycan catabolism

Non-lysosomal glycan catabolism-Now appears in the textbook!

(Figure 39.3)

NGLY1-deficiency was discovered in 2012!

Ngly1-deficiency: "Kids who don't cry"

(Grace Science Foundation Global NGLY1 Conference, 2017)

Wilsey Family

Major symptoms of NGLY1-deficiency:

Hypotonia
Movement Disorder
Epilepsy
Hypoalacrima
Scoliosis
Brain Atrophy/Abnormal EEG etc..

Might Family

Puzzling results on our Ngly1-KO mice (Serendipitous finding): ENGase-KO partially rescue embryonic lethality of Ngly1-KO mice!

--- ENGase could be a possible therapeutic target for NGLY1-deficiency

Why on earth deletion of *Engase* can rescue the phenotypes of *Ngly1*-KO mice??

Dr. Huang

"N-GlcNAc hypothesis"—in the absence of Ngly1, ENGase could act on some of the misfolded glycoproteins, generating N-GlcNAc proteins potentially detrimental to cells/tissues

Huang, et al., (2015) Endo-beta-*N*-acetylglucosaminidase forms N-GlcNAc protein aggregates during ER-associated degradation in Ngly1-defective cells. *Proc. Natl. Acad. Sci. USA*, 112, 1398-1403.

Question: Is "taking-care-of-junk" all Ngly1 does?

Modulation of activities for transcription factor(s) ??

(Lehrbach and Ruvkun, *eLife* 2016; Tomlin, *et al. ACS Cent. Sci.* 2017)

Possible functions of de-*N*-glycosylating enzymes (PNGase/ENGase) (Suzuki, et al., Glycoconj. J. 1995)

- (a) Quality Control of Newly Synthesized N-glycosyl Glycoproteins
- (b) Modulation of Receptor-ligand Interaction
- (c) Formation of Bioactive Molecules
- (d) Regulation of Proteolytic Processing
- (e) Generation of Structural Polymorphism

...Our "fantasy" comes true after 20+ years!

NGLY1 is a protein-editing enzyme!!

skn-1a(mg570) 0.4 µg/ml bortezomib during development SKN-1C SKN-1A[cut] SKN-1A[4ND] SKN-1C[4ND] SKN-1A[cut, 4ND]

Protein Sequence Editing of SKN-1A/Nrf1 by Peptide:N-Glycanase Controls Proteasome Gene Expression Lehrbach et al. Cell 177, 737 (2019)

(Harvard Univ.) (Mass. Gen. Hospital)

THE JOURNAL OF BIOLOGICAL CHEMISTRY © 1994 by The American Society for Biochemistry and Molecular Biology, Inc. Vol. 269, No. 26, Issue of July 1, pp. 17611-17618, 1994

Purification and Enzymatic Properties of Peptide: N-Glycanase from C3H Mouse-derived L-929 Fibroblast Cells

POSSIBLE WIDESPREAD OCCURRENCE OF POST-TRANSLATIONAL REMODIFICATION OF PROTEINS BY N-DEGLYCOSYLATION*

Tadashi Suzuki‡, Akira Seko‡, Ken Kitajima‡, Yasuo Inoue‡§, and Sadako Inoue¶

From the ‡Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Hongo-7, Tokyo 113, Japan and the \(\text{School of Pharmaceutical Sciences}, \text{Showa University}, \text{Hatanodai-1}, \(\text{Tokyo 142}, \text{Japan} \)

NGLY1-deficiency – Caused by Multiple Reasons?

Various Phenotypes

Recent Topics: Degradation intermediate of glycans can elicit an innate immune response!

(Fermaintt, et al., Nature Communications 2019)

TREX1- known as DNase, but also modulates function of oligosaccharyltransferase (OST), and its defect leads to upregulate the formation of free glycans, leading to auto-immune disease.

How is this immunoactive disaccharide (Manβ1-4GlcNAc) made?

Phenotypes of Ngly1-KO mice could be greatly influenced by their genetic background (Fujihira, et al., *PLoS Genet.* 2017)

Dr. Fujihira

Ngly1-/- mice survive upon crosses with outbred ICR mice!

ICR x B6 (*Ngly1-/+*); F2 (1 month old)

Survival Curve for F2 *Ngly1*-KO mice

♂ Ngly1-WT

Much severer phenotypes than B6 Ngly1-/- Engase-/- KO mice

Fujihira, et al., PLoS Genet. 2017

Ngly1-/- mice from ICR x C57BL/6

4-wks old るWT 20.70g るKO 9.58g

Died in 13 wks (Bent spine)

Hindlimb-clasping (4-wks old; Ngly1-KO mice-right)

Take home message: Possibility for drug development?

Considering the remarkable impact of the genetic background on phenotypes of Ngly1-/- mice, as well as the fact that genotype-phenotype relashionship was not so obvious for NGLY1-deficiency patients, development of effective drug to improve the various symptoms of this disease appears to be an achievable goal.

Ex. ENGase inhibitor

Appendix: *lysosomal degradation of N-glycans*: Cases in budding yeast (*S. cerevisiae*)

In budding yeast, almost all "free N-glycans" are formed by the action of the cytosolic PNGase

(they are released from misfolded glycoproteins during ERAD)

(Hirayama, et al. JBC, 2010)

.. But in mammalian cells, almost all free N-glycans are generated in a PNGase-dependent fashion (hydrolytic activity of OST)

To our surprise...

There is NO data suggesting the importance of vacuoles (equivalent to lysosomes) in the degradation of *N*-glycans..

(Doubt the common sense!)

Mice embryonic fibroblasts

Glycan
catabolisms can
be drastically
distinct among
different
organisms!

Dr. Harada

(Harada, et al. Glycobiology, 2015)

Summary

Our textbook knowledge is that glycan catabolism occurs in the lysosomes. (for your note, that does not apply for budding yeast, the best-characterized eukaryotic organisms).

Recently "non-lysosomal" glycan catabolism that occurs in the cytosol or ER has become also evident. This process is conserved from yeast to mammalian cells.

The cytosolic PNGase (NGLY1), which play a central role of the non-lysosomal glycan catabolism, is essential for normal development in human (which is not the case in yeast). The pathological mechanism for NGLY1-deficiency is, however, very complex.

Acknowledgement

T-CiRA Team

RIKEN Team

<u>Funding</u>: Toray Science Foundation, MEXT, Mizutani Fdn Glycosci, Yamada Sci Fdn, Mochida Fdn for Med Pharm Res.Mr. Hiroshi Mikitani

