

Glyco-engineering for Glycoprotein Production and Development of a Visualization Tool for Glycan Metabolic Pathways

Glycoforum

Morihisa Fujita

Institute for Glyco-core Research (iGCORE) Gifu University

Glycan functions and importance

Regulation of biosynthesis and transport of glycoproteins

Engineering of mammalian cells to produce biopharmaceuticals

Simplification of N-glycan structures in HEK293:

Production of recombinant proteins only having high-mannose type N-glycans

Development of a visualization tool for glycan metabolic pathways based on gene expression profiles: Glyco-engineering and Glyco-comparison using GlycoMaple

Biopharmaceutical proteins

Biopharmaceutical proteins produced by mammalian cells

Modified from Walsh G (2014) Nat. Biotech. 12: 992

HEK293

HEK293 (human embryonic kidney 293)

Established in 1977 by Frank Graham (McMaster Univ., Canada)

Easy to handle and widely used in basic and applied researches

Adaptable to **serum-free suspension** cultures

Used for production of some pharmaceuticals (ex. factor VIII, factor IX) Used for viruses or virus-like particles (VLPs) production

Less competitive for host development, compared to CHO cells

Accumulated genetic information in human databases

Engineering of mammalian cells to produce proteins with homogenous glycans

One issue for recombinant protein production in mammalian cells

Heterogeneity of glycans on proteins

Vaccine candidate for HIV-1 (gp120)

Enzyme replacement therapy for lysosomal diseases

Lysosomes

Garbage disposable in the cell

> 50 Lysosomal enzymes to hydrolyze substrates (nucleic acids, proteins, lipids, glycans)

Defects in lysosomal enzyme genes cause lysosomal storage diseases

Enzyme replacement therapy

Recombinant lysosomal enzymes are intravenously injected

Enzyme replacement therapy for lysosomal diseases

Broadly neutralizing antibodies for HIV-1

HIV-1

Burton et al. (2012) Cell Host Microbe

Many bnAbs recognize high-Man type N-glycans on gp120

Disruption of Golgi-Man-I to express proteins containing high Man-type N-glycans

Human GH47 (a1,2-mannosidases) in CAZy database

Human GH47 (α1,2-mannosidases)

Tempel et al (2004) J. Biol. Chem.

CAZy: Carbohydrate-Active enzyme (http://www.cazy.org/)

MAN1A1 & MAN1A2 double KO cells decreased complex-type and increased high-Man-type glycans

Flow cytometric analysis of glycans on the cell surface using two lectins

KO of other α 1,2-mannosidase genes in Double-KO

MAN1A1/A2/B1-triple KO cells

N-glycan analysis by MALDI-MS (whole cell lysates)

α-Galactosidase A (GLA):

hydrolyzes a glycosphingolipid Gb3 in the lysosomes and the **mutations in GALA** cause Fabry disease

Lysosomal acid lipase (LIPA):

breakdown of lipids such as cholesterol esters and triacylglycerols in lysosomes, its deficiency leads Wolman disease and cholesteryl ester storage disease

PNGaseF	EndoH
\bigcirc	\bigcirc
\bigcirc	X

N-glycan analysis of recombinant LIPA from T-KO

MAN1A1/A2/B1/C1-quadruple gene-KO HEK293 cells

MAN1A1/A2/B1/C1-KO

Jin, Fujita* et al (2018) J. Biol. Chem.; Ren, Fujita* et al (2019) J. Biochem.

Summary 1: Engineering of HEK293 cells producing recombinant proteins with high-mannose-type N-glycans

Established multiple mannosidase-I gene KO HEK293 cells, which would be suitable for production of proteins having high-Man-type N-glycans

Jin et al (2018) J. Biol. Chem.

Simplification of glycans in HEK293 cells

Contents

Simplification of N-glycan structures in HEK293: Production of recombinant proteins only having high-mannose type N-glycans

Development of a visualization tool for glycan metabolic pathways based on gene expression profiles:

Glyco-engineering and Glyco-comparison using GlycoMaple

Mammalian glycan structures

Pinho and Reis (2015) Nat. Rev. Cancer 15: 540

Prediction of Glycan structures

Glycan structures synthesized in cells **Glycan analysis** (Mass Spec., HPLC) Skillful technique is required. It is hard to analyze glycan structures with high molecular weight, charged or isomers. Glycan research is still a big hurdle for many researchers. It's possible to miss important phenomena involving glycans. Need a method to Need an easy way to analyze comprehensive access to glycan research glycan structures It is useful if Glycan structures are predicted from Gene expression profiles (1) List of Glycan-related genes

(2) Maps of Glycan metabolisms

(1) List of glycan-related genes

Group	No. of genes
1. Lipid-linked oligosaccharide (LLO) biosynthesis	38
2. N-glycan processing and branching	41
3. Glycosaminoglycan (GAG) biosynthesis and proteins	64
O-glycan (mucin-type) biosynthesis	33
5. O-glycan (others) biosynthesis	36
Glycosphingolipid (GSL) biosynthesis	77
N-glycan / O-glycan / GSL modification	47
GPI biosynthesis and proteins	178
9. C-mannosylation	4
10. Sugar-nucleotide biosynthesis	56
11. Sugar transporters	47
12. Golgi homeostasis	19
13. Lectins	172
14. Glycogen synthesis/metabolism	14
15. Hyaluronan synthesis/metabolism	11
16. Sulfate related	18
17. Lysosomal degradation of glycans	16
18. Other Glycosyltransferase (CAZy)	33
19. Other Glycoside hydrolase (CAZy)	32
20. Carbohydrate binding module (CAZy)	15
Total	951

(2) Drawing glycan metabolic maps

Map Number

- 1. Lipid-linked oligosaccharide (LLO) biosynthesis
- 2. N-glycan processing and branching
- 3. Complex capping of N-glycan / O-glycan / GSLs
- 4. GPI biosynthesis
- 5. O-GalNAc (mucin-type) biosynthesis
- 6. O-Fuc / O-Glc / Col-Gal / O-GlcNAc / C-Man
- 7. O-Man biosynthesis
- 8. Glycosaminoglycan (GAG) biosynthesis
- 9. Heparan sulfate biosynthesis
- 10. Chondroitin sulfate and dermatan sulfate
- 11. Keratan sulfate

SIT ____

- 12. Glycosphingolipid (core) biosynthesis
- 13. Globoside biosynthesis
- 14. Ganglioside biosynthesis
- 15. Sugar nucleotide biosynthesis
- 16. Lysosomal degradation of N-glycans
- 17. Lysosomal degradation of GSLs
- 18. Lysosomal degradation of GAGsy)
- 19. Hyaluronic acid biosynthesis and catabolism
- 20. Human milk oligosaccharide

Mapping to glycan metabolic pathways

Expression profiles of glycan-related genes in HEK293 cells

TPM value of gene	Biosynthetic pathway
x < 0.1	> Vot expressed
$0.1 \le x < 1$	$\longrightarrow \int $ Very weak
$1 \leq x < 4$	
$4 \leq x < 20$	
$20 \leq x < 100$	
$100 \leq x$	
Unknown gene	

LLO biosynthesis and OST

LLO: lipid-linked oligosaccharide; LLO is a precursor for N-glycosylation.

LLO biosynthesis and OST in HEK293

The LLO pathway is very basic and essential for cells.

LLO: lipid-linked oligosaccharide; LLO is a precursor for N-glycosylation.

Biosynthesis of mucin-type O-glycans

Huang et al. (2021) Dev. Cell

Biosynthesis of mucin-type O-glycans in HEK293

Several genes required for the pathways are not expressed in HEK293 cells

Biosynthesis of mucin-type O-glycans in HEK293

Complex capping of N-glycans / O-glycans / GSLs

Complex capping of N-glycans / O-glycans / GSLs

Complex capping of N-glycans / O-glycans / GSLs in HEK293

Customization: Expression of HNK-1 epitope in HEK293

GCORE

steps and to customize glycosylation pathways.

Customization: Expression of gangliosides in HEK293

Estitute for Object-care Research Data Indicat Higher Education and Research System

GlycoMaple enables us to find rate-limiting steps and to customize glycosylation pathways.

Construction of Glyco-Gene KO library

Based on the gene expression profiles in HEK293 cells, We selected genes required for N-glycan processing (Blue) We constructed 40 different gene KO cell library.

Lectin staining of 40 Glyco-Gene KO cell library

Gene KO cells

Disruption of multiple mannosidase-genes in HEK293

Jin et al (2018) J. Biol. Chem.; Ren et al (2019) J. Biochem.

Hyaluronan was increased in Mannosidase-KO cells

Hyaluronan was increased in Mannosidase-KO cells

GlycoMaple analysis using Kidney RNA-seq data in TCGA

TCGA (The Cancer Genome Atlas)

Comparison of normal and diseased tissues

Kidney

Solid Tissue Normal (Normal)

Clear cell carcinoma (ccRCC)

Papillary cell carcinoma (pRCC) N = 288

NIH NATIONAL CANCER INSTITUTE

UCSC Xena

N = 140

N = 530

See the bigger picture

https://portal.gdc.cancer.gov/ https://xenabrowser.net/

Summary 2

We developed a mapping tool for glycosylation pathways.

Based on gene expression, glycan structures were predicted.

Support of glycomic analysis :

Identification of glycan structures smoothly. Estimation of isomers from gene expression patterns

┇╇┇╴╴┇╨┇╨┇╩┇╨┇╩┇

Engineering of glycosylation pathways :

Simplification and customization of glycans Based on gene expression patterns,

Finding new insights of glycan regulation :

Complementation between N-glycans and glycolipids Glycan changes in normal and diseased tissues

Expansion of glycan researches :

Gene expression \rightarrow Glycobiology

Acknowledgements

Key Laboratory of Carbohydrate Chemistry & Biotechnology Jiangnan University (2014 - 2022)

Yi-Fan Huang

Institute for Glyco-Core Research (iGCORE)

Osaka University Taroh Kinoshita

Soka University Kiyoko F. Aoki-Kinoshita Sachiko Akase

University of Georgia Kazuhiro Aoki (MCW, now)

Michael Tiemeyer

AIST

Yasunori Chiba

Gifu University Yasuhiko Kizuka

Meijo University Shuji Mizumoto

Jiangnan University Xiao-Dong Gao

Tokai National Higher Education and Research System

Gifu University (2022 -)

Thank you for viewing the slides.

