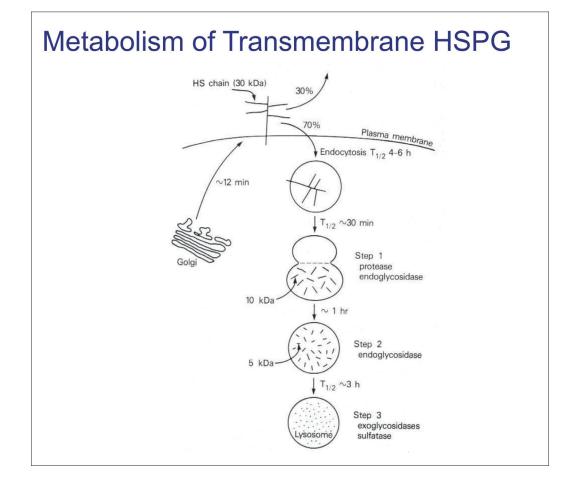


Metabolism of cell surface heparan sulfate proteoglycans


Masaki Yanagishita

Tokyo Medical and Dental University, Japan

1973-1975	Residency Program of Internal Medicine at Toranomon Hospital, Tokyo, Japan
1975-1978	Visiting Fellow, Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, U. S. A.
1979-1981	Clinical Fellow, Division of Endocrinology, Toranomon Hospital, Tokyo, Japan
1981-1986	Expert, Proteoglycan Chemistry Section, Mineralized Tissue Research Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland, U. S. A.
1986-1994	Visiting Scientist, Proteoglycan Chemistry Section, Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland, U. S. A.
1989	Guest Researcher, Department of Orthopaedic Surgery, University Hospital in Lund, Lund, Sweden
1994	Acting Chief, Proteoglycan Chemistry Section, Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland, U. S. A.
1994-1996	Chief, Glycobiology Program, Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland, U. S. A.
1996 - 1999	Professor, Department of Biochemistry, School of Dentistry, Tokyo Medical and Dental University
1999 - Present	Professor, Section of Biochemistry, Department of Hard Tissue Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
2007 - 2008	Invited Professor, Department of Medicine, University of Tromsø, Tromsø, Norway
2012	Visiting Scholar, Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, Cleve- land, Ohio, U. S. A.

We have extensively studied anabolic and catabolic turnover of cell surface heparan sulfate proteoglycans using metabolic radiolabeling experiments in various cell culture systems. Following are some of the experimental, mostly technical, details which have not been discussed in publications but critically endowed significance to many of my works.

The use of radioisotopic labeling with [³⁵S]sulfate provided superb experimental tools in maneuverability, which was fundamentally based on small intracellular PAPS pools with a very rapid turnover. In addition, miniscule detection limits and vast dynamic ranges in radioactive detection allowed accurate monitoring of isotopesthroughouttheexperiments. Furthermore, prominent molecular characteristics of proteoglycans, namely, high negative charges in glycosaminoglycans (plus additional luck in the differences in the extent of sulfation between heparan sulfate and chondroitin sulfate) and their large hydrodynamic sizes assisted easy chromatographic isolation of target molecules. For experimentalists, these molecular properties are

all fortunate yet natural attributes of the proteoglycans. Critically, however, without the help of a group of reagents, i. e., detergent, most of our proteoglycan metabolic studies were not practically meaningful, if not impossible. The important contribution of the detergents was their ability to improve recoveries of proteoglycans in chromatographic procedures even to quantitative levels. It consequently demanded the radioactive counting as a serious business; and the fallout was that we started to see what's really going on in the cell culture dishes and in the

test tubes. Initially, the use of detergents in chaotropic solvents (many chromatographic analyses of proteoglycans were done in chaotropic solvents, e. g., 4 M guanidine HCl, to prevent their strong ionic interactions) was discouraged by convention. Fortunately, I was sufficiently unconventional to try experiments with unpromising prospects. Voila! Greatly improved chromatographic recoveries of proteoglycans were the results. Additional advantage of using detergents with chaotropic solvents included solubilization of cell surface, i.e., hydrophobic, proteoglycans in monomer forms. Thus, the use of detergents laid down important fundamentals required for the quantitative analyses of cell surface proteoglycans.

Another advantage of the experimental system I used worth mentioning was, I believe, the use of primary cell cultures; the (rat ovarian) cells were prepared every time for the experiment. I guessed that cells fresh from their physiological states are more stable in functions and could tell more about something related to physiology.